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Abstract—The use of smart inverter capabilities of distributed
energy resources (DERs) enhances the grid reliability but in
the meanwhile exhibits more vulnerabilities to cyber-attacks.
This paper proposes a deep reinforcement learning (DRL)-
based defense approach. The defense problem is reformulated
as a Markov decision making process to control DERs and
minimizing load shedding to address the voltage violations caused
by cyber-attacks. The original soft actor-critic (SAC) method for
continuous actions has been extended to handle discrete and
continuous actions for controlling DERs’ setpoints and load-
shedding scenarios. Numerical comparison results with other
control approaches, such as Volt-VAR and Volt-Watt on the
modified IEEE 33-node, show that the proposed method can
achieve better voltage regulation and have less power losses in
the presence of cyber-attacks.

Index Terms—Cyber attack, Active distribution systems, Re-
newable generation, Deep reinforcement learning.

NOMENCLATURE

Constants

Yiess ~ Weight constant for power losses

ves  Weight constant for energy storage

Yo Weight constant for voltage violations

plosses glosses Total active/reactive power losses per time step

pP®  Total active power dispatched by energy storage per
time step

pt", q?" Total active/reactive power dispatched by solar PV
per time step

tD ER’K, th ERK Total active/reactive power supplied by K

distributed energy resources (DER) per time step

p?"i 974 Total active/reactive power supplied by the grid
per time step

pe"™¢, g™ Uncertainties for the active/reactive power gener-
ation per time step

st Total active power charged to the energy storage per
time step
p#*  Total active power discharged by the energy storage

per time step
p?,q¢ Total load active/reactive power per time step

d,s

Dy " q®" Total active/reactive load shedding per time step
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EFS  Remaining energy of energy storage at each time step
«, B, p, i penalty and reward constants for the reward function
SW,  Tie switching status at each time step ¢

1 node index

N Total number nodes

T Time period considered

SES Smin, Smax State of charge boundaries of energy stor-
age system

vt Voltage of ith node per time step

Abbreviations

DER Distributed Energy Resource

ES Energy Storage

PV Solar Photovoltaic

DRL  Deep Reinforcement Learning
SAC  Soft Actor Critic

\'AY% Volt-VAR

MPC Model Predictive Control
VW Volt-Watt

I. INTRODUCTION

Mart control of distributed energy resources (DER) in

distribution systems is bringing a fundamental shift in
how these networks are maintained within the security limits.
Historically, control methods were designed based on conven-
tional approaches, where cyber threats have not been paid
attention [1]. The idea of introducing internet protocols in
the electrical network to use more advanced protection and
control components has created the need to defend the cyber-
attacks. Furthermore, a study on [2], [3] has showed that
only 62% of cyber-attacks can be recognized after they cause
massive damage to the system, which makes it a critical issue
for system designers. Nowadays, the digital transformation
of the electrical distribution systems has forced lots of re-
strictions and regulations that must be applied for achieving
a secure and resilient system [4]. In the context of cyber-
physical security [5], [6], smart attackers can initiate false
data injection attacks (FDI) [7], where a slight change in
any of the controllable devices (i.e., smart inverters, smart
ring main units and digital relays), can result in disturbing
the networking security without being detected by existing
defense approaches. In this paper, we propose a learning-based
approach for the mitigation of cyber-attacks on connected
loads and DERs. Deep reinforcement learning (DRL) was
opted for its superior capability of learning the power system
constraints and achieving optimal control strategy. In [8], the
multi-agent RL detection algorithm using deep Q-network is
developed, which focuses on detecting FDI not the mitigation
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strategy. In [9], deep RL based recovery strategy is proposed
to minimize the cyber-attack impacts under different scenarios
for a transmission system. This is different from distribution
system with DERs considered in this work. In [10], [11], the
DRL-based approach for generating Volt-VAR and Volt-Watt
curves is proposed. The action space aims to control Volt-
VAR curves in mitigating cyber-attacks. This paper formulates
the mitigation differently considering both DER setpoints and
tie-switch actions. To illustrate more about the role of DRL
in mitigating cyber-attack scenarios, [8] has demonstrated the
conceptual model for maintaining cyber security. It is shown
that for an offensive type of attack, the use of artificial
intelligence to develop the attack strategy can be smarter and
thus cannot be easily detected.

This paper proposes a DRL-based defense approach to
mitigate the cyber attacks induced voltage violations and
power losses on a distribution network. The main contributions
of this paper work can be summarized as follows:

o The cyber attack defense problem is reformulated as a
Markov decision-making process with the aim of con-
trolling DERs and tie-switches to address the voltage
violations and minimize power losses caused by cyber
attacks. The original soft actor-critic (SAC) method for
continuous actions has been extended to handle discrete
and continuous actions for controlling DERs’ setpoints
and tie-switches scenarios.

o The proposed method can control DERs while avoiding
infeasible switching combinations. Comparison results
with the Volt-VAR and Volt-Watt methods show that our
method has less power losses and achieves much better
performances in regulating the voltage violation issues
for both load-altering attacks and DER attacks.

0.924 * MNormal operation
Cyber-attacked scenario
0.90 T T T T
0 20 40 60 80 100

Nodes

Fig. 1. Voltage violations due to cyber-attacks on the distribution system.

II. PROBLEM FORMULATION

Cyber attack scenarios for loads and DERs are investigated
in this paper, where these attacked nodes are the most vul-
nerable ones to cause system violations. Assuming the system
has N nodes, our target is to maintain the system security
by controlling DERs, tie-switches and load-switching actions.
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Battery energy storage is assumed to be co-located with inter-
mittent DERSs, a reasonable assumption as the grid and battery
energy storage can be used to mitigate DER variability and
uncertainties. The overloading and under-generation scenarios
resulted from the cyber-attacks are specifically studied in this
paper. The key challenge is to balance the system generation
and load and mitigate voltage violations resulted from cyber-
attacks on the loads and DERs. Fig. 1 shows one example,
where attacks on some distribution system nodes can lead to
voltage violations.

The problem can be formulated as an optimization model
with DERs setting points and load shedding being the decision
variables. At each control step t of the time horizon T,
controlling the system to return back to its normal operation
aims to minimize the multi-objective function as shown below:

mink = Z [’Yloss(péosses)]

teT
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0.95 < |V;4] < 1.05,¥i € N (15)

where the coefficient in the objective function are determined
based on the priorities of each term and if no specific priority
is preferred, equal weights are applied. One assumption behind
this optimization-based defense model is that the operator
needs to timely detect the attacks, which can be a challenge
to achieve in practice. Furthermore, the DER and load uncer-
tainties make the optimization problem even more challenging.
This paper develops a DRL-based approach to address them.
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III. PROPOSED EXTENDED SAC-BASED DRL CONTROL
FOR CYBER ATTACK MITIGATION

The cyber-attack problem is first cast into the Markov deci-
sion process (MDP). The environment is configured so that the
agent learns how to suppress the cyber-attacks in the network.
This impact can be viewed through voltage violations and
power congestion. The system experiences different conditions
at each time step represented by the state space vector. Actions
are taken at each time step based on the updated state from the
last time step and with respect to the boundaries of the system
input actions. Consequently, a reward function is formulated
to reflect the effectiveness of control actions at each time step.
The key elements for the MDP are shown below.

State Space S;: the state S; is used to represent the system
status at each time step and is defined as follows:

Si = [EFS, P, Pl (16)

Actions Space a;: the set of available actions at each time
step and it determines the continuous operational setpoints of
the DERs based on the available power that can be generated
and energy storage limits. Actions also include discrete oper-
ation of load shedding and tie switching, where load shedding
are controlled in discrete steps based on the p factor and tie
switches are switched on/off to form the optimal combination
at each time step. Formally, we have

DER,K
) 4t

ar = ,SW, , P&

[ PtDER,k (17)

Reward Function: the reward function represents the multi-
objective function we would like to maximize. The reward in
this problem is related to minimizing the number of shedded
loads and power losses in the network while maintaining
energy reserve in energy storage, and penalizing the voltage
violation at each node for all time steps. These four objectives
are weighted in the reward formulation with respect to their
impacts on the system performance. Our target is to maximize
the reward function as defined below:

T
Maximize ZT (s¢,at) (18)
t=0
T
r(sea) = > (0 (Pioss) — B (EZSMor — BES)
t=0 (19)
—p (VN —Viy) —p (P — PL)

Handling Continuous and Discrete Actions: The MDP
can be solved by SAC algorithm [12], where the function
approximators are used for both soft Q-function and policy.
A parameterized soft Q-function and a tractable policy will
be considered, where the parameters of these networks are
0 and ¢. For example, the soft Q-function can be modeled
as expressive neural networks, and the policy as a Gaussian
distribution with mean and covariance given by neural network
as shown below:

(o)
7w =argmax F Z’yt (R
t=0
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(st;a0) + aH (w (- | s0))) | (20)

Jn(®) = Es,uD [Eayor, [alog (7 (ar | 5¢)) — Qo (¢, at)]]

(2D
where ~ is a future discount coefficient; R (s, a;) represents
the expected discount reward with state s; and taking actions
following actor policy 7; H (7 (- | s¢)) is the entropy term;
a > 0 is the trade-off coefficient. Adding the entropy term is
to encourage the agent to explore more possibilities in action
space. SAC has been shown to have a greater advantage to han-
dle stochastic models of uncertainties and intermittent nature
of the DERs via the entropy term. The latter allows the auto-
tuning of parameters to handle the percentages of uncertainties
in generation or demand. However, the SAC is not designed
to address the mixed action space with both continuous and
discrete control actions. The continuous actions come from
DERs and energy storage while discrete actions are related to
switch changes. Motivated by [13], we propose to modify the
Q-function so as to deal with both continuous and discrete
control actions via:

Jx(8) = Boyrn [ (s0)" [log (w4 (1)) = Qo (s0)]]  @2)

Inside SAC, there are two neural networks known as actor
and critic networks, where actor network is designed to find
the best action corresponding to the current state and critic
network is designed to find the Q-value of the executed action
in the current state. The critic network computes target for the
Q function as:

Y (s, 78, St41) = 47 (Q (St41, ar1) — alogmo (a1 | se41))
(23)
The final stage of the proposed DRL algorithm is deducing
f and ¢ to continue in an iterative process to reach the best
action values for each trained scenario.

Fig. 2. Modified IEEE 33-node system with tie switches and DERs.

IV. NUMERICAL RESULTS

A modified IEEE 33-node system with three-phase loads
and 4 DERs that are utility-owned (i.e., each DER consists
of 1 ES unit and 1 PV with installed capacities of 500 kW
each unit), is used for testing. The system is modeled using
OpenDSS and is configured to be in the grid connected mode.
At the first solution evaluated using OpenDSS, no voltage
violation has been observed during the normal operation. In
addition, 4 tie switches have been added to the network and no
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sectionalizers are considered for operation. The learning envi-
ronment is designed according to OpenAl Gym [14], which is
a common interfacing library to define DRL environment for
the agent. The SAC algorithm is implemented using PyTorch.
Specifically, in the SAC, both actor and critic networks are
designed as feed-forward neural networks with three hidden
layers of 50, 100 and 50 neurons and a ReLU activation
function for each layer. Other SAC hyper-parameters are as
follows: Adam optimizer is used with a learning rate of 0.0001
and discount factor « is set to 0.9. The target network is
updated by tau = 0.001 and random process is applied for
better exploration with ¢ = 0.1, § = 0.1 p = 10 and
p = 0.1; the replay buffer size is 100000 with batch size
256. The offline DRL training spends around 3 hours and 30
minutes on a laptop computer with 3.6GHz Intel i7 processor
and 32.0 GB RAM. The proposed DRL defense algorithm is
compared with other control algorithms, such as the Volt-VAR
and Volt-Watt using the default control curves in OpenDSS
[15]). Also, the MPC algorithm is implemented following [16]
based on the problem formulation in Section II using the same
control and state variables for the proposed DRL algorithm.
Attacks are initiated for few timesteps by changing the load
and DER setpoints (% power change of loads and/or DERs)
in OpenDSS using python interface.
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Fig. 3. Learning curve for the proposed SAC agent

The DRL agent is trained for window of 290 time-steps (i.e.,
each time-step is 5 min, yielding 24 hrs). During this window,
DRL explores the best policy to control DER setpoints and
tie-switches so as to mitigate voltage violations and minimize
the network power losses. Fig. 3 shows the convergence curve.
It can be found that the DRL agent can converge to a good
reward function just after about 40 episodes. More episodes of
training leads to slight improvement on the final reward. This
shows that the DRL agent can quickly learn the good control
policy in defending the cyber attacks, which will be shown
in the next two sections. As for the control execution, DRL
and MPC are remotely executed from a centralized controller.
However, Volt-VAR and Volt-Watt are locally managed for
each corresponding DER. Furthermore, for the MPC and DRL
approaches, we assume those system states come from the
centralized distribution system state estimator.
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A. Load-Altering Attack Scenario

This section evaluates the effectiveness of the proposed
approach for defending the load- altering attacks. Following
the settings shown in Table I for initiating the load-altering
attacks, it is found that attacking nodes 6 and 7 at the same
time is most likely to cause voltage violations (based on trial
and error). Therefore, these two nodes are used for simulating
different types of attack scenarios. After defining the targeted
nodes, the performance of each method is tested and the
results are shown in Fig. 5 and Table II. It can be observed
that the proposed DRL-based approach is able to successfully
regulate the voltage within security limit and has the least
power losses among all approaches. Volt-Watt and Volt-VAR
approaches have low voltage violation issues and the power
loss is 10% higher. The MPC-based method has some issues
in high voltage violation but its power loss is better than Volt-
Watt and Volt-VAR approaches.

TABLE 1
LOAD ALTERING ATTACK SETTINGS.
Load Change(%) Vmin Vmax  Plosses(%)
0 09619 1.0486 7.719
20 0.9394 1.0486 14.62
40 0.9392  1.0486  14.65
60 0.9390 1.0486 15.1
100 0.9389 1.0486 15.12
200 0.9366 1.0485 15.37
TABLE II
STATISTICS OF THE COMPARISON RESULTS UNDER LOAD ALTERING
ATTACKS.
Control method Vmin Vmax  Plosses(kW)  Plosses (%)
Non-control 0.9394 1.0486  585.421 14.62
Volt-Watt 0.9389 1.0482 593.52 15.1
Volt-VAR 0.9394 1.0486  585.421 14.62
Proposed DRL 09812 1.0482 62.366 3.185
MPC 0.9645  1.06 407.858 10.95

B. DER Setting Point Attack Scenario

This section evaluates the effectiveness of the proposed
DRL approach for defending the attacks on DER setting
points. Following the settings shown in Table III in initiating
the DER altering attacks. Initially, the system does not have
any voltage violations. However, with only 10% of shifting on
the setting points of all DERs, the system detects low voltage
issues under no control scenarios. The performance of each
method is tested and the results are shown in Table IV. It
can be observed that the proposed DRL-based approach is
able to successfully regulate the voltage within the security
limit and has the least power losses among all approaches.
By contrast, the other two widely used Volt-VAR and Volt-
Watt control approaches have serious over-voltage issues. The
proposed DRL approach can regulate the voltage close to the
security boundary without violating them. This is because the
agent can successfully identify the right combinations of DER
setting point changes among non-attacked DERs to mitigate
the impacts caused by those with attacks on DERs. It is
interesting to notice that the attacks on DERs seem to cause
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more severe voltage issues than the load-altering attacks. This
is expected as the increased penetration of DERs itself is likely
to induce voltage security problem.

TABLE III
DER ALTERING ATTACK SETTINGS.

DER Change(%) Vmin Vmax  Plosses(%)
0 0.96188 1.2132  7.719
-10 0.94941  1.2132  32.67
-20 0.93921  1.2132  33.79
-40 0.92899  1.2132 45.21
TABLE IV
STATISTICS OF THE COMPARISON RESULTS UNDER DER ALTERING
ATTACKS.
Control method Vmin Vmax Plosses(kW)  Plosses (%)
Non-control 0.9645 1.2132 619.629 20.64
Volt-Watt 1.0042 1.2132 619.562 16.583
Volt-VAR 0.98292 1.2091 601.545 15.62
Proposed DRL 0.952321  1.050182  432.897 10.892
MPC 0.9734 1.08 538.9 10.95
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Fig. 4. Voltage regulation performance comparison results under load attacks.
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Fig. 5. Voltage regulation performance comparison results under DER attacks.

V. CONCLUSION

This paper proposes a DRL-based defense approach to
mitigate cyber-attacks on loads and DERs. The objectives
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were to regulate the voltage while minimizing the distribution
network power losses. Unlike the optimization-based approach
that needs to consider specific attack scenarios, our proposed
method formulates the cyber-attack defense problem as a MDP
problem. We have modified the original SAC approach to deal
with discrete and continuous actions for controlling DERSs’
setpoints and network switches. Comparison results with other
control approaches show that the the proposed method controls
DERs and network switches effectively to achieve less power
losses and voltage violations. Future work will enhance the
scalability and robustness of the approach for larger networks
and topology changes. We will develop a robust DRL to
defense adversarial agents, including corrupted data in both
training and online applications.
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